bon atoms are higher than those containing an odd number. Aromatic position isomers can be distinguished readily with the exception of the otoluate and the *m*-toluate. Mixed melting points of salts with identical or nearly identical melting temperatures are from six to twelve degrees lower than those of the pure compounds.

I. ALIPHATIC SALTS			
	М. р.,		М.р.,
	°C.		°C.
Acetate	149	Monochloroacetate	154
Butyrate	142	Oleate	133
Caprate	145	Oxalate	194
Caproate	146	Palmitate	135
Caprylate	147	Propionate	146
Diethylacetate	141	Stearate	135
Formate	148	Succinate	167
Glutarate	149	Trichloroacetate	146
Heptylate	147	Valerate	146
Laurate	142	Isovalerate	148
Malonate	139		
II. AROMATIC SALTS			
Benzoate	154	o-Iodobenzoate	154
o-Bromobenzoate	163	<i>m</i> -Iodobenzoate	152
m-Bromobenzoate	154	p-Iodobenzoate	181
p-Bromobenzoate	173	Phthalate	166
Cinnamate	170	Salicylate	168
o-Chlorobenzoate	168	o-Toluate	151
<i>m</i> -Chlorobenzoate	150	<i>m</i> -Toluate	151
p-Chlorobenzoate	163	<i>p</i> -Toluate	165


DEPARTMENT OF CHEMISTRY

NORTH PACIFIC COLLEGE OF OREGON **RECEIVED AUGUST 14, 1941** PORTLAND, OREGON

A Qualitative Test for Ethylene and Propylene Thioureas

By C. O. Edens and Treat B. Johnson

The 2-thio-4,5-dihydroglyoxalines have not received the attention that they deserve. It is possible that some of the simple representatives of this series may prove to be substances of biochemical interest, and it is desirable to acquire a better knowledge of their chemistry. During the course of some investigations in this series, the authors have found very useful a spot-test for detecting small amounts of the two simple reduced 2-thioglyoxaline derivatives I and II in reaction products.

The procedure is very simple and consists of adding a few drops of the unknown to 1 ml. of the spot reagent.¹ A positive test is indicated by the immediate formation of a characteristic colorless and gelatinous precipitate composed of extremely small fiber-like crystals. These fibers are visible by a high-powered microscope.

20 drops of reagent $+ 1$ ml. o	f
ethylene-thiourea which is	Result
$0.01 \ M$	Precipitate at once
.005	Slight precipitation
.0025	Precipitate after one minute
.0010	After cooling to 5° for four
	minutes became slightly
	opalescent

The lowest dilution giving a precipitate is 0.001 M. One ml. of this solution gives a distinct opalescence. Thus the sensitivity of the tests permits detection of 0.102 mg. per ml. of ethylenethiourea in pure aqueous solution.

The test may be used as a semi-quantitative method by diluting a known volume of liquid until precipitation is no longer observed. The free thiol group appears to be necessary for the formation of the characteristic precipitate. Interaction of the thioldihydroglyoxaline with chloroacetic acid prevents the formation of a precipitate with the spot-reagent. The test has proved very convenient in our work, and has given reliable results. Much is yet to be learned, however, about interfering substances. The test was also applied to 2-thio-5-methylglyoxaline, and with formation of a gelatinous precipitate. It is very possible that this reagent may serve not only for detection, but also for developing a technique for the isolation of these sulfur cycles from mixtures of biological products.

(1) The reagent is a mixture of equal volumes of saturated aqueous copper sulfate and concentrated hydrochloric acid.

DEPARTMENT OF CHEMISTRY

YALE UNIVERSITY **RECEIVED SEPTEMBER 23, 1941** NEW HAVEN, CONNECTICUT

The Use of Amalgamated Aluminum as a Catalyst in the Friedel and Crafts Reaction

By L. I. DIUGUID

It has been shown by the writer¹ that a series of alkylbenzenes could be prepared via Friedel and Crafts procedure using amalgamated aluminum catalyst. Isolated examples of the use of amalgamated aluminum or aluminum have been reported but no systematic investigation under

(1) Research work completed under the supervision of Dr. W. T. Miller, Cornell University, in partial fulfillment of the requirements for the degree of Master of Science (Thesis, 1939).